An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows
Keywords
methods: numerical, hydrodynamics, gravitation, supernovae: general
Abstract
A type of overlapping grid in spherical coordinates called the Yin-Yang grid is successfully implemented into a 3D version of the explicit Eulerian grid-based code PROMETHEUS including self-gravity. The modified code successfully passed several standard hydrodynamic tests producing results which are in very good agreement with analytic solutions. Moreover, the solutions obtained with the Yin-Yang grid exhibit no peculiar behaviour at the boundary between the two grid patches. The code has also been successfully used to model astrophysically relevant situations, namely equilibrium polytropes, a Taylor-Sedov explosion, and Rayleigh-Taylor instabilities. According to our results, the usage of the Yin-Yang grid greatly enhances the suitability and efficiency of 3D explicit Eulerian codes based on spherical polar coordinates for astrophysical flows.





