Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

NERO- a post-maximum supernova radiation transport code

Maurer, I. and Jerkstrand, A. and Mazzali, P.~A. and Taubenberger, S. and Hachinger, S. and Kromer, M. and Sim, S. and Hillebrandt, W.

Keywords

line: formation, radiative transfer, supernovae: general

Abstract

The interpretation of supernova (SN) spectra is essential for deriving SN ejecta properties such as density and composition, which in turn can tell us about their progenitors and the explosion mechanism. A very large number of atomic processes are important for spectrum formation. Several tools for calculating SN spectra exist, but they mainly focus on the very early or late epochs. The intermediate phase, which requires a NLTE treatment of radiation transport has rarely been studied. In this paper we present a new SN radiation transport code, NERO, which can look at those epochs. All the atomic processes are treated in full NLTE, under a steady-state assumption. This is a valid approach between roughly 50 and 500 days after the explosion depending on SN type. This covers the post-maximum photospheric and the early and the intermediate nebular phase. As a test, we compare NERO to the radiation transport code of Jerkstrand et al. (2011) and to the nebular code of Mazzali et al. (2001). All three codes have been developed independently and a comparison provides a valuable opportunity to investigate their reliability. Currently, NERO is one-dimensional and can be used for predicting spectra of synthetic explosion models or for deriving SN properties by spectral modelling. To demonstrate this, we study the spectra of the _s14normal_s14 SN Ia 2005cf between 50 and 350 days after the explosion and identify most of the common SN Ia line features at post maximum epochs.

Information

Published
2011 as article
mnras, 418 - page(s): 1517-1525
Contact
Prof. Dr. Wolfgang Hillebrandt
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1105.3049

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de