Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey

Lusso, E. and Comastri, A. and Vignali, C. and Zamorani, G. and Treister, E. and Sanders, D. and Bolzonella, M. and Bongiorno, A. and Brusa, M. and Ci

Keywords

methods: statistical, quasars: general, galaxies: active, Galaxy: general, X-rays: general

Abstract

We present a study of the multi-wavelength properties, from the mid-infrared to the hard X-rays, of a sample of 255 spectroscopically identified X-ray selected Type-2 AGN from the XMM-COSMOS survey. Most of them are obscured the X-ray absorbing column density is determined by either X-ray spectral analyses (for the 45% of the sample), or from hardness ratios. Spectral Energy Distributions (SEDs) are computed for all sources in the sample. The average SEDs in the optical band is dominated by the host-galaxy light, especially at low X-ray luminosities and redshifts. There is also a trend between X-ray and mid-infrared luminosity: the AGN contribution in the infrared is higher at higher X-ray luminosities. We calculate bolometric luminosities, bolometric corrections, stellar masses and star formation rates (SFRs) for these sources using a multi-component modeling to properly disentangle the emission associated to stellar light from that due to black hole accretion. For 90% of the sample we also have the morphological classifications obtained with an upgraded version of the Zurich Estimator of Structural Types (ZEST_s16). We find that on average Type-2 AGN have lower bolometric corrections than Type-1 AGN. Moreover, we confirm that the morphologies of AGN host-galaxies indicate that there is a preference for these Type-2 AGN to be hosted in bulge-dominated galaxies with stellar masses greater than 10^10 solar masses.

Information

Published
2011 as article
ap, 534 - page(s): A110
Type
experimental work
Links
pdf
adsabs.harvard.edu/a…
Related to the research area(s):
F
e-Print
1108.4925

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de