Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

The VLT-FLAMES Tarantula Survey. III. A very massive star in apparent isolation from the massive cluster R136

Bestenlehner, J.~M. and Vink, J.~S. and Gr_s06fener, G. and Najarro, F. and Evans, C.~J. and Bastian, N. and Bonanos, A.~Z. and Bressert, E. and Crowt

Keywords

stars: Wolf-Rayet, stars: early-type, stars: atmospheres, stars: mass-loss, stars: fundamental parameters

Abstract

VFTS 682 is located in an active star-forming region, at a projected distance of 29 pc from the young massive cluster R136 in the Tarantula Nebula of the Large Magellanic Cloud. It was previously reported as a candidate young stellar object, and more recently spectroscopically revealed as a hydrogen-rich Wolf-Rayet (WN5h) star. Our aim is to obtain the stellar properties, such as its intrinsic luminosity, and to investigate the origin of VFTS 682. To this purpose, we model optical spectra from the VLT-FLAMES Tarantula Survey with the non-LTE stellar atmosphere code CMFGEN, as well as the spectral energy distribution from complementary optical and infrared photometry. We find the extinction properties to be highly peculiar (RV ~4.7), and obtain a surprisingly high luminosity log(L/Lsun) = 6.5 pm 0.2, corresponding to a present-day mass of ~150Msun. The high effective temperature of 52.2 pm 2.5kK might be explained by chemically homogeneous evolution - suggested to be the key process in the path towards long gamma-ray bursts. Lightcurves of the object show variability at the 10% level on a timescale of years. Such changes are unprecedented for classical Wolf-Rayet stars, and are more reminiscent of Luminous Blue Variables. Finally, we discuss two possibilities for the origin of VFTS 682: (i) the star either formed in situ, which would have profound implications for the formation mechanism of massive stars, or (ii) VFTS 682 is a slow runaway star that originated from the dense cluster R136, which would make it the most massive runaway known to date.

Information

Published
2011 as article
530 - page(s): L14
Type
experimental work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1105.1775

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de