Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Matter power spectra in dynamical dark energy cosmologies

Fedeli, C. and Dolag, K. and Moscardini, L.

Keywords

cosmological parameters, cosmology: theory, large scale structure of Universe

Abstract

(abridged) We used a suite of numerical cosmological simulations in order to investigate the effect of gas cooling and star formation on the large scale matter distribution. The simulations follow the formation of cosmic structures in five different Dark Energy models: the fiducial $Lambda$CDM cosmology and four models where the Dark Energy density is allowed to have a non-trivial redshift evolution. For each cosmology we have a control run with dark matter only, in order to allow a direct assessment of the impact of baryonic processes. We found that the power spectra of gas and stars, as well as the total matter power spectrum, are in qualitative agreement with the results of previous works in the framework of the fiducial model, although several quantitative differences exist. We used the halo model in order to investigate the backreaction of gas and stars on the dark matter distribution, finding that it is very well reproduced by increasing the average dark matter halo concentration by 17%, irrespective of the mass. Moving to model universes dominated by dynamical Dark Energy, it turns out that they introduce a specific signature on the power spectra of the various matter components, that is qualitatively independent of the exact cosmology considered. This generic shape is well captured by the halo model, however the finer details of the dark matter power spectrum can be precisely captured only at the cost of a few slight modifications to the ingredients entering the model. The backreaction of baryons onto the dark matter distribution works pretty much in the same way as in the reference $Lambda$CDM model. Nonetheless, the increment in average concentration is less pronounced than in the fiducial model (only $sim 10%$), in agreement with a series of other clues pointing toward the fact that star formation is less efficient when Dark Energy displays a dynamical evolution.

Information

Published
2011 as article
mnras, - page(s): 1707
Contact
PD Dr. Klaus Dolag
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
E
e-Print
1106.3987

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de