Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Linearized flavor-stability analysis of dense neutrino streams

Banerjee, Arka and Dighe, Amol and Raffelt, Georg

Keywords

No keywords

Abstract

Neutrino-neutrino interactions in dense neutrino streams, like those emitted by a core-collapse supernova, can lead to self-induced neutrino flavor conversions. While this is a nonlinear phenomenon, the onset of these conversions can be examined through a standard stability analysis of the linearized equations of motion. The problem is reduced to a linear eigenvalue equation that involves the neutrino density, energy spectrum, angular distribution, and matter density. In the single-angle case, we reproduce previous results and use them to identify two generic instabilities: The system is stable above a cutoff density (_s15cutoff mode_s15), or can approach an asymptotic instability for increasing density (_s15saturation mode_s15). We analyze multi-angle effects on these generic types of instabilities and find that even the saturation mode is suppressed at large densities. For both types of modes, a given multi-angle spectrum typically is unstable when the neutrino and electron densities are comparable, but stable when the neutrino density is much smaller or much larger than the electron density. The role of an instability in the SN context depends on the available growth time and on the range of affected modes. At large matter density, most modes are off-resonance even when the system is unstable.

Information

Published
2011 as article
Phys.Rev., D84 - page(s): 053013
Type
theoretical work
Links
pdf
Related to the research area(s):
G
e-Print
1107.2308

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de