Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Time dependent couplings in the dark sector: from background evolution to nonlinear structure formation.

Marco Baldi

Keywords

No keywords

Abstract

We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more concentrated with respect to LCDM, contrarily to what happens for constant coupling models where concentrations can only decrease. However, for some specific choice of the interaction function the reduction of halo concentrations can be larger than in constant coupling scenarios. In general, we find that time dependent interactions between dark energy and CDM can in some cases determine stronger effects on structure formation as compared to the constant coupling case, with a significantly weaker impact on the background evolution of the Universe, and might therefore provide a more viable possibility to alleviate the tensions between observations and the LCDM model on small scales than the constant coupling scenario. [Abridged]

Information

Published
2011 as article (english)
MNRAS, 411
Type
theoretical work
Links
Related to the research area(s):
E
e-Print
arXiv:1005.2188

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de