Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

A High Signal-to-noise Ratio Composite Spectrum of Gamma-ray Burst Afterglows

Christensen, L._s19 Fynbo, J. P. U._s19 Prochaska, J. X._s19 Th_s04ne, C. C._s19 de Ugarte Postigo, A._s19 Jakobsson, P.

Keywords

galaxies: high-redshift, gamma-ray burst: general

Abstract

We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35 < z < 6.7 observed with low-resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 Å in the rest frame and has a mean signal-to-noise ratio of 150 per 1 Å pixel and reaches a maximum of ~300 in the range 2500-3500 Å. Equivalent widths are measured from metal absorption lines from the Ly_s13_s17945_s19 line to ~5200 Å, and associated metal and hydrogen lines are identified between the Lyman break and Ly_s13_s17945_s19 line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine-structure lines when dividing the sample into bursts observed within 2 hr from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high- or low-prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong Ca II and Mg II absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine-structure lines, while metal absorption lines are weaker.

Information

Published
2011 as article
ApJ, 727 - page(s): 73
Type
experimental work
Links
pdf
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1011.0734

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de