Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Nucleosynthesis in Two-Dimensional Delayed Detonation Models of Type Ia Supernova Explosions

Maeda, K., R_s04pke, F. K., Fink, M., Hillebrandt, W., Travaglio, C., Thielemann, F.-K.

Keywords

hydrodynamics, nuclear reactions, nucleosynthesis, abundances, supernovae: general

Abstract

The nucleosynthetic characteristics of various explosion mechanisms of Type Ia supernovae (SNe Ia) is explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around $10^{7}$ g cm$^{-3}$ -- relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high density region near the center of a white dwarf and into the low density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., $^{58}$Ni, $^{54}$Fe) is within a shell, showing a large off-set, above the bulk of $^{56}$Ni distribution, while species produced by the detonation are distributed more spherically (abridged).

Information

Published
2010 as article
Astrophysical Journal, 712 - page(s): 624-638
Type
theoretical work
Links
pdf
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1002.2153

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de