Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

A new value for the half-life of $^10$Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting

G. Korschinek and A. Bergmaier and T. Faestermann and U.C. Gerstmann and K. Knie and G. Rugel and A. Wallner and I. Dillmann and G. Dollinger and Ch.

Keywords

Half-life of 10Be

Abstract

The importance of 10Be in different applications of accelerator mass spectrometry (AMS) is well-known. In this context the half-life of 10Be has a crucial impact, and an accurate and precise determination of the half-life is a prerequisite for many of the applications of 10Be in cosmic-ray and earth science research. Recently, the value of the 10Be half-life has been the centre of much debate. In order to overcome uncertainties inherent in previous determinations, we introduced a new method of high accuracy and precision. An aliquot of our highly enriched 10Be master solution was serially diluted with increasing wellknown masses of 9Be. We then determined the initial 10Be concentration by least square fit to the series of measurements of the resultant 10Be/9Be ratio. In order to minimize uncertainties because of mass bias which plague other low-energy mass spectrometric methods, we used for the first time Heavy-Ion Elastic Recoil Detection (HI-ERD) for the determination of the 10Be/9Be isotopic ratios, a technique which does not suffer from difficult to control mass fractionation. The specific activity of the master solution was measured by means of accurate liquid scintillation counting (LSC). The resultant combination of the 10Be concentration and activity yields a 10Be half-life of T1/2 = 1.388 ± 0.018 (1 s, 1.30%) Ma. In a parallel but independent study (Chmeleff et al. [11]), found a value of 1.386 ± 0.016 (1.15%) Ma. Our recommended weighted mean and mean standard error for the new value for 10Be half-life based on these two independent measurements is 1.387 ± 0.012 (0.87%) Ma

Information

Published
2010 as article
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 - page(s): 187--191
Type
experimental work
Links
pdf
www.sciencedirect.co…
Related to the research area(s):
G

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de