Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Axially deformed relativistic Hartree Bogoliubov with separable pairing force

Tian, Yuan and Ma, Zhong-yu and Ring, P.

Keywords

No keywords

Abstract

A separable form of pairing interaction in the $^{1}S_{0}$ channel has been introduced and successfully applied in the description of both static and dynamic properties of superfluid nuclei. By adjusting the parameters to reproduce the pairing properties of the Gogny force in nuclear matter, this separable pairing force is successful in depicting the pairing properties of ground states and vibrational excitations of spherical nuclei on almost the same footing as the original Gogny force. In this article, we extend these investigations for Relativistic Hartree Bogoliubov theory in deformed nuclei with axial symmetry (RHBZ) using the same separable pairing interaction. In order to preserve translational invariance we construct one- and two-dimensional Talmi-Moshinsky brackets for the cylindrical harmonic oscillator basis. We show that the matrix elements of this force can then be expanded in a series of separable terms. The convergence of this expansion is investigated for various deformations. We observe a relatively fast convergence. This allows for a considerable reduction in computing time as compared to RHBZ-calculations with the full Gogny force in the pairing channel. As an example we solve the RHBZ equations with this separable pairing force for the ground states of the chain of Sm-isotopes. Good agreement with the experimental data as well as with other theoretical results is achieved.

Information

Published
2009 as article
Phys. Rev., C80 - page(s): 024313
Contact
Prof. Dr. Peter Ring
Type
theoretical work
Links
pdf
spires
www-library.desy.de/…
Related to the research area(s):
G
e-Print
0908.1848

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de