Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Structure and Formation of Elliptical and Spheroidal Galaxies

Kormendy, J. and Fisher, D.~B. and Cornell, M.~E. and Bender, R.

Keywords

galaxies: elliptical and lenticular, cD, galaxies: evolution, galaxies: formation, galaxies: nuclei, galaxies: photometry, galaxies: structure

Abstract

New surface photometry of all known elliptical galaxies in the Virgo cluster is added to published data to derive composite profiles over large dynamic ranges. Sersic functions fit them remarkably well. Effective brightnesses and radii are derived via Sersic fits and by integrating the profiles nonparametrically. We strongly confirm two dichotomies: (1) Elliptical galaxies from cDs to M32 form a tight sequence in Fundamental Plane parameter space that is almost perpendicular to the sequence of spheroidal galaxies from NGC 205 to Draco. This is consistent with our understanding of their different formation processes: mergers for Es and conversion of late-type galaxies into spheroidals by environmental effects and by energy feedback from supernovae. (2) Ellipticals come in two varieties: e.g., our 10 brightest Es have cuspy cores_s19 our 17 fainter Es do not have cores. We find a new distinct component in coreless Es. All have extra light at the center above the inward extrapolation of the outer Sersic profile. We suggest that extra light is made by starbursts in dissipational (wet) mergers, as in numerical simulations. Three other new aspects also point to an explanation of how the E-E dichotomy formed: extra light Es were made in wet mergers while core Es were made in dry mergers. We confirm that core Es do and extra light Es generally do not contain X-ray gas. This suggests why the E-E dichotomy arose. Only core Es and their progenitors are massive enough to retain hot gas that can make dry mergers dry and protect old star populations from late star formation.

Information

Published
2009 as article
ApJS, 182 - page(s): 216-309
Contact
Dr. Stella Seitz
Type
experimental work
Links
pdf
adsabs.harvard.edu/a…
Related to the research area(s):
F
e-Print
0810.1681

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de