Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

VINE -- A numerical code for simulating astrophysical systems using particles II: Implementation and performance characteristics

Nelson, A.~F. and Wetzstein, M. and Naab, T. and .

Keywords

Astrophysics

Abstract

We continue our presentation of VINE. We begin with a description of relevant architectural properties of the serial and shared memory parallel computers on which VINE is intended to run, and describe their influences on the design of the code itself. We continue with a detailed description of a number of optimizations made to the layout of the particle data in memory and to our implementation of a binary tree used to access that data for use in gravitational force calculations and searches for SPH neighbor particles. We describe modifications to the code necessary to obtain forces efficiently from special purpose `GRAPE_s14 hardware. We conclude with an extensive series of performance tests, which demonstrate that the code can be run efficiently and without modification in serial on small workstations or in parallel using OpenMP compiler directives on large scale, shared memory parallel machines. We analyze the effects of the code optimizations and estimate that they improve its overall performance by more than an order of magnitude over that obtained by many other tree codes. Scaled parallel performance of the gravity and SPH calculations, together the most costly components of most simulations, is nearly linear up to maximum machine sizes available to us (120 processors on an Origin~3000). At similar accuracy, performance of VINE, used in GRAPE-tree mode, is approximately a factor two slower than that of VINE, used in host-only mode. Optimizations of the GRAPE/host communications could improve the speed by as much as a factor of three, but have not yet been implemented in VINE.

Information

Published
2008 as article
ArXiv e-prints,
Contact
Dr. Thorsten Naab
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
0802.4253

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de