Constraints on Supersymmetric Models from Catalytic Primordial Nucleosynthesis of Beryllium
Keywords
No keywords
Abstract
The catalysis of nuclear reactions by negatively charged relics leads to increased outputs of primordial ^6Li and ^9Be. In combination with observational constraints on the primordial fractions of ^6Li and ^9Be, this imposes strong restrictions on the primordial abundance and the lifetime of charged relics. We analyze the constraints from the catalysis of ^9Be on supersymmetric models in which the gravitino is the lightest supersymmetric particle and a charged slepton--such as the lighter stau--the next-to-lightest supersymmetric particle (NLSP). Barring the special cases in which the primordial fraction of the slepton NLSP is significantly depleted, we find that the ^9Be data require a slepton NLSP lifetime of less than 6x10^3 seconds. We also address the issue of the catalytic destruction of ^6Li and ^9Be by late forming bound states of protons with negatively charged relics finding that it does not lead to any significant modification of the limit on the slepton lifetime.





