Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

2D kinematics of simulated disc merger remnants

Jesseit, R. and Naab, T. and Peletier, R.~F. and Burkert, A.

Keywords

No keywords

Abstract

We present a two-dimensional kinematic analysis for a sample of simulated binary disc merger remnants with mass ratios 1:1 and 3:1. For the progenitor discs we used pure stellar models as well as models with 10% of their mass in gas. A multitude of phenomena also observed in real galaxies are found in the simulations. These include misaligned rotation, embedded discs, gas rings, counter-rotating cores and kinematic misaligned discs. Using the 2D maps we illustrate projection effects and the change in properties of a merger remnant when gas is included in the merger. We find that kinematic peculiar subsystems are preferably formed in equal mass mergers. Equal-mass collisionless remnants can show almost no rotation, regular rotation or strong kinematic misalignment. The inclusion of gas makes the remnants appear more round(1:1) and axisymmetric(3:1). Counter-Rotating Cores (CRCs) are almost exclusively formed in equal-mass mergers with a dissipational component. 3:1 remnants show a much more regular structure. We quantify these properties by applying the kinemetric methods recently developed by Krajnovi_s18_s14c et al. This work will help to understand observations of elliptical galaxies with 2D field spectrographs, like SAURON.

Information

Published
2007 as article
mnras, 376 - page(s): 997-1020
Contact
Prof. Dr. Andreas Burkert
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
arXiv:astro-ph/0606144

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de